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Changes in the metal properties caused by periodic indents in the metal surface were studied within
the limit of quantum theory of free electrons. The authors show that due to destructive interference
of de Broglie waves, some quantum states inside the low-dimensional metal become quantum
mechanically forbidden for free electrons. Wave-vector density in k space is reduced dramatically.
At the same time the number of free electrons does not change, as the metal remains electrically
neutral. Because of the Pauli exclusion principle, some free electrons must occupy quantum states
with higher wave numbers. The Fermi vector and Fermi energy of low-dimensional metal increase,
and consequently, the work function decreases. In the experiment, the magnitude of the effect is
limited by the roughness of the metal surface. A rough surface causes scattering of the de Broglie
waves and compromises their interference. Recent experiments demonstrated a reduction of work
function in thin metal films having periodic indents in the surface. Experimental results are in good
qualitative agreement with the theory. This effect could exist in any quantum system comprising
fermions inside a potential-energy box of special geometry. © 2007 American Vacuum

Society. �DOI: 10.1116/1.2753852�
I. INTRODUCTION

Recent developments of nanoelectronics enable the fabri-
cation of structures with dimensions comparable to the de
Broglie wavelength of a free electron inside a solid. This
new technical capability makes it possible to fabricate some
microelectronic devices such as resonant tunneling diodes
and transistors, superlattices, quantum wells, and others1

based on the wave properties of the electrons. In this article,
we discuss what happens when regular indents, which cause
interference of de Broglie waves, are fabricated on the sur-
face of a thin metal film. We will study the free electrons
inside a rectangular potential-energy box with indented wall
and compare the results to the case of electrons in a box with
plane walls. We have shown that modifying the wall of a
rectangular potential-energy box leads to an increase of the
Fermi energy level. Results obtained for the potential-energy
box were extrapolated to the case of low-dimensional metals
�thin metal films�. The experimental possibility of fabricating
such indents on the surface of a thin metal film was studied.
Practical recommendations regarding dimensions and shape
of the indents are given. In addition, the influence of non-
regularities of thin metal films, such as the presence of gran-
ules inside the film and the roughness of surface of the film,
was studied.

II. ELECTRONS IN A POTENTIAL-ENERGY BOX
WITH AN INDENTED WALL

We begin with the general case of electrons inside a
potential-energy box. Assume a rectangular potential-energy
box with one of the walls modified as shown in Fig. 1. Let
the potential energy of the electron inside the box volume be
equal to zero, and that outside the box volume be equal to
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infinity. The indents on the wall have the shape of strips
having depth a and width w. Let us name the box shown on
Fig. 1 as indented potential-energy box �IPEB� to distinguish
it from the ordinary potential-energy box �PEB� having plane
walls.

The time independent Schrödinger equation for electron
wave function inside the PEB has the form

�2� + �2m/�2�E� = 0. �1�

Here, � is the wave function of the electron, m is the mass
of the electron, and E is the energy of the electron. Let us
rewrite Eq. �1� in the form of the Helmholtz equation,

��2 + k2�� = 0, �2�

where k is wave vector, k=�2mE /�.
Once the indent depth a in our particular case is supposed

to be much less than the thickness of the metallic film a
�Lx, we can use the volume perturbation method to solve
the Helmholtz equation.2 The idea is as follows: The whole
volume is divided in two parts, the main volume �MV� and
the additional volume �AV�. The MV is supposed to be much
larger than the AV, and it defines the form of solutions for the
whole composite volume. Next, solutions of the composite
volume are searched in the form of solutions of the MV. The
method is especially effective in the case where the MV has
a simple geometry, for example, a rectangular geometry, al-
lowing separation of the variables. In our case, the whole
volume in Fig. 1 can be divided in two, as shown in Fig. 2.
We regard the big rectangular box as the MV and the total
volume of strips as the AV. The MV has dimensions Lx, Ly,
and Lz. The solutions of Eq. �2� for such a volume are well
known. Because of the rectangular shape, solutions are found
by using the method of separation of variables. The solutions

are plane waves having a discrete spectrum,
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kn
mx = �n/Lx, kj

my = �j/Ly, ki
mz = �i/Lz. �3�

Here, kmx, kmy, and kmz are the x, y, and z components of
wave vectors of the MV and n ,m , i=1,2 ,3 , . . .. In the same
manner the spectrum of the single strip of the AV is the
following:

kp
ax = �p/a, kq

ay = �q/w, ki
az = �i/Lz. �4�

Here, kax, kay, and kaz are components of wave vectors of one
strip of AV, p ,q=1,2 ,3 , . . ., and a and w are dimensions of
the strip, as shown on Fig. 2. Suppose the MV has a length of
Ly in the Y direction. Let us assume Ly = l ·2w, where l is an
integer. Once solutions of the MV are periodic in the Y di-
rection, and AV contain periodic in Y direction strips, we can
find solutions of the composite volume by matching a single
strip to the MV. Let �m�x ,y ,z� be the wave function of
electrons in the MV and �a�x ,y ,z� be the wave function in
the AV. The matching conditions will be �m=�a and an
equation of partial derivatives from two sides for all points
of the connection area. In the MV, �m=0 for all points of the
walls. In the AV, �a=0 for all points of the walls. Obviously,
�m=�a, for all points of the connecting area, is satisfied
automatically. Equations of partial derivatives ��m /�x
=��a /�x, ��m /�y=��a /�y, ��m /�z=��a /�z lead to equa-
tions of wave-vector components in the two volumes, kmx

=kax, kmy =kay, and kmz=kaz. The volumes in Fig. 2 have the
same spectra along the Z axis �Eqs. �3� and �4��. Obviously,
the matching of two volumes occurs automatically in the Z
direction, ki

mz=ki
az=�i /Lz. Along the X direction, we must

match two discrete spectra �kn
mx=�n /Lx and kp

ax=�p /a�,

knp
cx = kn

mx � kp
ax = ��n/Lx� � ��p/a� . �5�

Here, knp
cx is the spectrum of the composite volume in the X

direction. Equation �5� means that during matching, we have
to select wave vectors from the spectrum of the MV, having

FIG. 1. Three-dimensional view of indented potential-energy box.

FIG. 2. Potential-energy box with indented wall divided into two volumes.
Main volume has dimensions Lx, Ly, and Lz, and one of the strips of the

additional volume has dimensions a, w, and Lz.
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n such that, when multiplied by a /Lx, it returns a natural
number q. The matching condition could be written as
n�a /Lx��N. To obtain an analytical result, let us find the
maximum density of solutions for the composite volume in
the X direction. According to Eq. �5�, the spectrum for the
composite volume is the intersection of the spectrum of the
MV and the spectrum of the AV. Because Lx�a, the spec-
trum of the MV is more dense than the spectrum of the AV.
The intersection of the large solution set �the spectrum of the
MV� and the small solution set �the spectrum of the AV� is a
maximum when the small set is a subset of the large set. We
can write ��q /a�� ��n /Lx� and �Lx /a�q�n. The last situa-
tion can happen only when Lx /a=o, where o is natural num-
ber. Once we maximize the number of solutions, we can
write

knp
cx = �p/a , �6�

and use Eq. �6� for further calculations, keeping in mind that
we are calculating the case of the maximum solution set �or
spectrum density�.

Next we will match solutions of two rectangular volumes
along the Y direction in the same way,

kjq
cy = kj

my � kq
ay = ��j/Ly� � ��q/w� . �7�

Here, kjq
cy is the spectrum of the composite volume in Y di-

rection. We maximize solutions just as we did for the X
direction and find

kjq
cy = �q/w . �8�

Finally, we have the following spectrum for the composite
volume:

knp
cx = �p/a, kjq

cy = �q/w, kii
cz = �i/Lz. �9�

Let us rewrite the spectra for PEB and IPEB

kn
x = �n/Lx, kj

y = �j/Ly, ki
z = �i/Lz, for PEB, �10a�

and

kp
x = �p/a, kq

y = �q/w, ki
z = �i/Lz, for IPEB. �10b�

In the last formulae, we skip some working indices used in
this section to simplify the presentation.

Formulae �10a� and �10b� are obtained using the volume
perturbation method for solving of the Helmholtz equation.
This method assumes that the AV is much less than the MV
�a /2Lx��1. Special attention should be paid to the limit of
very low a and w. Case a, w→0 has the following physical
interpretation. Standing waves in the MV ignore the AV be-
cause of wave diffraction on it. If we assume that the wave
ignores nonregularities with dimensions less than its wave-
length, we must make the following corrections in formulae
�10b�. It is valid for kx�2� /a and ky �2� /w for p ,q
=2,3 ,4 , . . .. For the range 0�kx�2� /a and 0�ky �2� /w,
Eq. �10a� should be used for IPEB instead of Eq. �10b�. In
practice, dimensions a and w are such that only the first few
k should be added to Eq. �10b�.

For the case of large a /2Lx, other methods were used. The

general solution of Eq. �2� in such a complicated geometry
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exhibits several problems. A complicated surface shape does
not allow finding an orthogonal coordinate system that will
allow separation of variables. Therefore, boundary condi-
tions may be written only in the form of piecewise regular
functions. A general solution of Eq. �2� usually contains in-
finite sums. However, there are methods2 that allow one to
obtain a dispersion equation and to calculate the wave vector.
The Helmholtz equation is frequently used for calculating
the electromagnetic field in electromagnetic resonator cavi-
ties, waveguides, and delay lines. We found the following
similarities between the electron wave function inside the
IPEB and electromagnetic field inside electromagnetic delay
lines. First, our geometry matches the geometry of a corru-
gated waveguide delay line.3 Second, the same Eq. �2� is
used to describe both cases. Third, the boundary condition
for the electromagnetic wave inside the corrugated wave-
guide �=0 �here, � is the electric component of the electro-
magnetic wave� for walls of a conductive waveguide exactly
matches the boundary condition for electrons, �=0 outside
the metal. Fourth, any wave can be presented as the sum of
plane waves in both cases. We also found that similar analo-
gies are described in the literature.4 Therefore, for the case of
high a, we used the method of solving the Helmholtz equa-
tion inside the corrugated waveguides.2,3 This method is
based on solving a transcendental equation. We found nu-
merical solutions for the transcendental equation for high
a /2Lx and obtained the same result, namely, the reduction of
the spectrum density for IPEB relative to PEB.

For very thin films Lz�Lx, w, it is expected that our struc-
ture will not exhibit quantum features in the Z direction.
Therefore, it is reasonable to consider a model of the electron
motion in a two-dimensional �2D� region delimited by the
line X=0 from one side, and a periodic curve on the opposite
side. In that case, we can consider the 2D Helmholtz equa-
tion and use special methods on solving. Specifically, we
used the boundary integral method �BIM�, which is espe-
cially effective for the low-energetic part of the spectrum and
has been widely employed for studying 2D nanosystems.5

The BIM method implies consideration of an appropriate
integral equation instead of the Helmholtz equation. We have
applied the corresponding numerical algorithm6 to a finite
number of periods and calculated the lowest ten energy lev-
els. We note that computation of higher energy levels with
reasonable accuracy demands rapidly increasing machine
time. The obtained spectrum of transverse wave vectors also
shows a reduction in spectral density.

At the end of this section, it is worth noting that the
above-discussed effect of the energy-spectrum reduction is
closely related to the so-called quantum billiard problem.
The 2D system studied represents a modification of the quan-
tum billiard problem. Unlike the circle and rectangular bil-
liards, the corrugated boundary makes the system under con-
sideration nonintegrable. This means that the number of
degrees of freedom exceeds the number of constants of mo-
tion. Such billiards constitute chaotic systems. The distinc-
tion between the spectra of chaotic and nonchaotic �regular�

systems is exhibited by an energy level spacing
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distribution.6,7 Namely, consecutive energy levels are likely
to attract each other in the case of an integrable system,
whereas they repel each other in the case of a chaotic system.

III. FREE ELECTRON IN LOW-DIMENSIONAL
METAL WITH MODIFIED WALL

To investigate how periodic indents change quantum
states inside the low-dimensional metal, we will use a quan-
tum model of free electrons. Free electrons inside the metal
form a Fermi gas. Cyclic boundary conditions of Born-
Carman,

kn
x = 2�n/Lx, kj

y = 2�j/Ly, ki
z = 2�i/Lz, �11�

are used instead of Eq. �3�. Here, n , j , i=0, ±1, ±2, ±3, . . ..
The result of the theory is a Fermi sphere in k space. All
possible quantum states are occupied until kF at T=0. How-
ever, for T�0, there are two types of free electrons inside
the Fermi gas. Electrons with k�kF interact with their envi-
ronment and define the transport properties of metals such as
charge and heat transport. Electrons with k�kF do not inter-
act with the environment because all quantum states nearby
are already occupied by other electrons �it becomes forbid-
den to exchange small amounts of energy with the environ-
ment�. Such electrons are ballistic and have formally infinite
mean free path. This feature allows us to regard them as
planar waves, traveling between the walls of the metal �if the
distance between walls is not too great�. Further, we will
concentrate on such ballistic electrons. Once we work with
electrons with infinite �or very long� mean free paths, we can
regard the low-dimensional metal as a potential-energy box
and extrapolate calculations of the previous section to it.

We start by comparing the volume of an elementary cell
in k space for thin metal films with and without periodic
indents. From Eqs. �10a�, �10b�, and �11�, we have

dVk = 8�3/�LxLyLz� and dVk in = 8�3/�awLz� . �12�

Here, dVk is the volume of an elementary cell in k space for
a plain film, and dVk in is the volume of an elementary cell in
k space for an indented film. For the ratio of volumes, we get
�dVk /dVk in�= �aw� / �LxLy�. Because each electron occupies
more volume of the k space in the case of indented metal,
some electrons must occupy quantum states with k�kF.
Consequently, the Fermi wave vector and the corresponding
Fermi energy level of an indented metal film will increase as

FIG. 3. Section of Fermi sphere is k space for PEB �left� and IPEB �right�.
in Fig. 3.
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Next, we calculate the maximum wave vector km at T=0
for an indented metal film. Assume that the metal lattice is
cubic, the metal is single valence and the distance between
atoms is d. The volume of the metal box shown in Fig. 1 is

V = LyLz�Lx + a/2� . �13�

The number of atoms inside the metal of that volume is s
=V /d3. The number of free electrons is equal to s and we
have

s = LyLz�Lx + a/2�/d3 �14�

for the number of free electrons. The total volume occupied
by all electrons in k space will be

Vm = �s/2�dVk in = �4/3��km
3 . �15�

Here, km is the maximum possible k in the case of the in-
dented metal film, and Vm is the volume of the modified
Fermi sphere in k space. Each k contains two quantum states
occupied by two electrons with spins of 1 /2 and −1/2. That
is why coefficient 2 appeared in Eq. �15�. From Eqs.
�12�–�15�, we calculate the radius of modified Fermi sphere
as

km = �1/d��3�2�Ly�Lx + a/2�/�aw���1/3. �16�

The radius of a Fermi sphere kF for an ordinary metal
film does not depend on its dimensions and equals
kF= �1/d��3�2�1/3. Comparing the last equation with Eq.
�16�, we have

km = kF�Ly�Lx + a/2�/�aw��1/3. �17�

Equation �17� shows the increase of the radius of the Fermi
sphere in the case of a low-dimensional, indented metal film
in comparison with the same metal film with a plane surface
�Fig. 3�. According to E�k2, the Fermi energy in the low-
dimensional metal film with the indented surface will relate
to the Fermi energy in the same metal film with the plane
surface as follows:

Em = EF�Ly�Lx + a/2�/�aw��2/3. �18�

If we assume a�Lx, Eq. �18� can be rewritten in the follow-
ing simple form:

Em = EF�LxLy/aw�2/3. �19�

As mentioned above, the case of a, w→0 has a different
physical interpretation �wave diffraction on small volume�
and should not be regarded as a singularity in Eq. �19�. The
next question is what value of Ly should be used in Eq. �19�
in the case of infinite length of the structure in the Y direc-
tion �Fig. 1�. We remember here that wave properties of elec-
trons in solids are limited by the mean free path 	. Conse-
quently the maximum value of Ly is Ly max=	. Therefore, for
the thin film �structure, infinite in the Y direction� we can
write

2/3
Em = EF��Lx/a��	/w�� . �20�
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We remember here that the above calculations were made
for the case if Eqs. �6� and �8� are valid, or for the case of
maximized possible quantum states.

An obvious question emerges: assume we make the ratio
LxLy /aw high enough for Em to exceed the vacuum level,
what will happen? If we assume that one electron has energy
greater than the vacuum level, it will leave the metal. The
metal, as a result, will charge positively, and the bottom of
the potential-energy box will go down on the energy scale,
because the metal is now charged. Once the energy level at
the bottom of the potential-energy box decreases, a vacant
place for the electron will appear at the top region of the
potential-energy box. The electron that left the metal will
return because of the electrostatic force and occupy the re-
cently released energy level. Accordingly, Em will not exceed
the vacuum level. Instead, the energy level at the bottom of
the potential-energy box will go down exactly to such a dis-
tance to allow the potential-energy box to carry all the elec-
trons needed for electrical neutrality of the metal.

In thin metal films, the surface is never ideally plane. The
roughness of the surface strongly limits the increase of the
Fermi level. These limits will be discussed in more detail in
the next section.

The dimensional quantum effects in ultrathin metal films,
using a rectangular potential-box model and quantum model
of free electrons, were studied in Ref. 8.

IV. PROBLEMS OF PRACTICAL REALIZATION AND
POSSIBLE SOLUTIONS

The type of structure discussed could be obtained by de-
positing a thin metal film on an insulator substrate, and then
etching the indents inside the metal film. What are the limi-
tations? The de Broglie wave diffraction will take place on
the indents. Diffraction on the indents will lead to the wave
“ignoring” the indent, which changes all the calculations
above. Consequently, the results obtained are valid only
when the diffraction of the wave on the indent is negligible,
or 
�w. Here, 
=2� /k1 is the de Broglie wavelength of the
electron with wave vector k1. In the case when the indent
width is w�	, wave properties of the electron will not
propagate on many indents along the Y axis. In that case,
wave interference will have only local character and the ef-
fect will not depend on w and Ly. Values describing the Y
dimension will not be included in Eq. �20�. This one-
dimensional case was analyzed in Refs. 9 and 10.

There are some requirements to the homogeneity of the
thin metal film. First, the film structure should be as close to
single crystal as possible. This requirement arise, because the
free-electron wave function should be continuous through
the whole thickness of film Lx+a, which means that the me-
tallic film cannot be granular. If the thin metallic film is
granular, the wave function will have an interruption on the
border of grains, and the indented wall’s influence will be
compromised. Note that lattice impurities do not influence
free electrons with energies E�EF. In order to interact with
an impurity inside the lattice, an electron should exchange

energy �a small amount of energy� with the impurity. That
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type of energy exchange is forbidden because all possible
quantum states nearby are already occupied. Because of this,
the mean free path of an electron, having energy E�EF, is
very long. Consequently, the material of the film can have
impurities, but the film should not be granular.

Surface roughness should be minimized, because it leads
to the scattering of de Broglie waves. Scattering is consider-
able for the de Broglie wavelengths less than the roughness
of the surface. Substrates with a roughness of 5 Å are com-
mercially available. Metal film deposited on such a substrate
can also have a surface with the same roughness. The de
Broglie wavelength of a free electron at the Fermi level is
5–10 Å in metals. Scattering of the de Broglie waves of
electrons having energies E�EF will be considerable. Cor-
responding energy levels will be smoothed. Smoothing of
energy levels decreases the lifetime and leads to continuous
energy spectrum, instead of a discrete one. Figure 4 shows
Fermi and vacuum levels of some single-valence metals on
the energy scale �left Y axis� and simultaneously on the scale
of de Broglie wavelength �right Y axis� of the electron cal-
culated from 
=2�� /�2mE. Figure 4 demonstrates that 5 Å
roughness of the surface is enough to eliminate the energy
barrier for metals such as Cs and Na. The same 5 Å rough-
ness creates a gap from zero to about the Fermi level in the
energy spectrum of metals such as Au and Ag. As a result, it
is possible to reduce the work function of Cs and Na to zero,
in the case of 5 Å surface roughness; but the same 5 Å
roughness on the surface of Au or Ag allows a reduction of
the work function of only 0.5–1 eV.

The depth of the indent should be much more than the
surface roughness. Consequently, the minimum possible a is
30–50 Å. According to Eq. �20�, the minimum possible w
will be 300–500 Å. The primary experimental limitation in
the case of the structure shown in Fig. 4 is that the ratio
�Lx /a��5, to achieve a maximum work-function reduction.
Consequently, the thickness of the metal film should be more
than 300 Å. Films of such thickness usually still repeat the
substrate surface shape, and film surface roughness will not
exceed the roughness of the base substrate. However, the
same is not true for metal films with a thickness of 1000 Å
and more, because a thick film surface does not follow the

FIG. 4. Energy diagrams of some single-valence metals on the scale of de
Broglie wavelength.
surface of the substrate. That puts another limit, 15
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� �Lx /a��5, on the dimensions of the film. Other possible
structures, such as single crystal, will not be limited by the
same requirements.

It should be noted that the spectrum density will change if
there is a shift in periodicity of the indents in the Y direction.
In experiments, it is difficult to keep exact periodicity, espe-
cially in the case of low width of the indent. In such case,
neighboring indents will have a different spectrum kq

ay

=�q /w, depending on their individual width w. Then one
more spectrum should be included in Eq. �8�, and we will
have an intersection of three sets instead of two. It will de-
crease the spectrum density.

And finally there are some limits on the selection of ma-
terials that could be used for a thin film. Most metals oxidize
under the influence of the atmosphere. Even when placed in
a vacuum, metals oxidize with time, because of the influence
of residual gases. Typical metal oxides have a depth of
50–100 Å which is considerable on the depth scale dis-
cussed. Because of those limitations, gold is the best material
that can be used in experiments.

An effect was observed in thin Au and Nb films. Thin
films with indented surfaces were fabricated and their work-
function reduction was observed.11 Experimental results are
in qualitative agreement with the theory. Particularly, experi-
ments show that work-function reduction strongly depends
on the structure of the indented film. Amorphous films show
much more reduction in work function than polycrystalline
films made from the same material. Work-function reduction
in samples depends on the depth of the indents, as predicted
by theory. Experiments did not show quantitative agreement
with the theory. One of the reasons could be that the effect
strongly depends on the structure of the film. In particular,
the effect depends dramatically on the value of the mean free
path of electrons below the Fermi level. In the theory, we
assume that the mean free path of such electrons is much
more than film thickness. Most probably we have not real-
ized such a condition in our recent measurements made at
T=300 K. The finite roughness of the surface of Au films
causes de Broglie wave scattering and reduces the effect.
Roughness of the surface is not included in calculations, and
it is probably one more reason why we do not have quanti-
tative agreement between experiment and theory.

V. CONCLUSIONS

To investigate a new quantum interference effect in low-
dimensional metals, we studied the behavior of free electrons
in the potential-energy box of special geometry. It was
shown that when periodic indents are introduced in the plain
wall of a rectangular potential-energy box, the spectrum den-
sity of possible solutions of the Schrödinger equation is re-
duced dramatically. Once the number of possible quantum
states decreases, electrons must occupy higher energy levels
because of the Pauli exclusion principle. Results obtained for
electrons in the modified potential-energy box were extrapo-
lated to the case of the free ballistic electrons inside the
low-dimensional metal film. The electron distribution func-

tion of low-dimensional metal changes. Fermi energy in-
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creases, and consequently, work function decreases. Limiting
factors of the effect are metal surface roughness and the fi-
nite mean free path of ballistic electrons. Because surface
roughness is a limiting factor, the magnitude of the effect
will be higher for materials having a low value of Fermi
energy and low value of work function. Because electron
mean free path is also a limiting factor, the effect will be
higher in the case of a single crystal or amorphous structure
of the film. Recent experiments demonstrate good quantita-
tive agreement with theory. Increase in the Fermi level and
the corresponding decrease of the work function of the thin
films will have practical use for devices working on the basis
of electron emission and electron tunneling. In addition, such
layers will be useful in the semiconductor industry, particu-
larly for the structures in which contact potential difference
between two layers plays an important role.
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